
JOURNAL OF COMPUTATIONAL PHYSICS 5, 188-207 (1970) 

A New Method for the Solution of the Schrijdinger Equation 

Jo& CANOSA AND ROBERTO GOMES DE OLIVEIRA* 

IBM Scientific Center, 2670 Hanover Street, Palo Alto, California 94304 

Received May 26, 1969 

We approximate the potential in the one-dimensional S&r&linger equation by a 
step function with a tkite number of steps. In each step, the resultin8 diierential equation 
has constant trxdkknts and is integrated exactly in terms of circular or hyperbolic 
functions. The solutions are then matched at the interface of each layer to construct the 
eigenfunctions in the whole domain. Unique features of the ruunerical method are: 
(a) All the eigenfunctions and e&nvalues are obtained with the same absolute accuracy 
for the same number of steps in the potential; (b) any desired number of eigenvahtes and 
eigenfunctiona ate obtained in one single pass without any need to supply initial guesses 
for the eigenvaluea; (c) for any Rxed number of steps in the potential, we obtain in 
principle the whole infinite spectrum of eigenvahtea and eigenfunctions. 

1. INTRODUCTION 

We present a method for the solution of the one-dimensional Schriidinger 
equation which is quite simple both from a conceptual and from a practical point 
of view. 

The potential is approximated by a step function with an arbitrary but t&rite 
number of steps. In each step, the resulting differential equation has constant 
coefficients and is integrated exactly in terms of circular or hyperbolic functions. 
The solutions are then matched at the interface of each layer in order to obtain 
the eigenfunctions in the whole domain. The only idea involved is the very familiar 
one in Quantum Mechanics of matching the S&r&linger equation solutions at the 
interface of square potential barriers used, for example, in barrier penetration 
problems. The contribution of this work is essentially the implementation and 
testing of a numerical algorithm which solves the S&r&linger equation for a step 
potential fimction with an arbitrary number of steps. 

The method has been tested in a variety of problems and the numerical results 
obtained arc quite good. The input required for its implementation is only a 
numerical table of the potential, no initial guesses or iterates of the eigenvalw are 
necessary. The computer program yields in one single pass any desired number of 
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eigenvalues, the corresponding eigenfunctions and their nodes. Further, the eigen- 
values are obtained independently from the eigenfunctions, so that if only the 
eigenvalues are desired, the computing time can be reduced substantially. 

An essential difference relative to the more conventional methods can be pointed 
out. In the method proposed, the potential is approximated by a step function, but 
once the approximate problem is obtained, it is integrated exactly. Therefore, the 
higher eigenvalues and eigenfunctions should be roughly as accurate as the funda- 
mental eigenvalue and eigenfunction because all eigenfunctions are equally exact 
solutions to a given problem (i.e., they are written down explicitly in terms of 
circular and hyperbolic functions). This expectation is indeed confirmed by the 
numerical results. 

In the more conventional methods, such as Rayleigh-Ritz ([l], [2]) or finite- 
difference methods ([3], [4]), it is necessary to increase progressively the number 
of mesh points in order to compute higher eigenvalues and eigenfunctions with the 
same given accuracy. Blatt [4] states that the number of mesh points needed in a 
finite-difference scheme must be roughly proportional to the number of nodes of 
the eigenfunction, in order to compute it with a given accuracy. This is also the 
case for Rayleigh-Ritz methods [I]. The reasons for this are that the eigenfunctions 
are approximations to the solutions of a given problem. Clearly, as the higher 
eigenfunctions oscillate more rapidly, as their order increases, more mesh points 
are needed in any approximation scheme to compute them with a given accuracy. 

It will become apparent later that the approximation of the potential by a step 
function is central to our method. Indeed, for problems with very deep and rapidly 
varying potential wells, the use of the elementary addition formulas for the circular 
and hyperbolic functions is essential for simple and successful implementation of 
the numerical calculations. 

2. STATEMENT OF THE PROBLEM 

The one-dimensional Schrodinger equation is written in the following dimen- 
sionless form: 

d2y/dxZ - J’(x) y + Ey = 0, (1) 

where V(x) is the potential function and E the energy eigenvalue. For the bound 
states in central field problems, V(x) is infinite at the origin x = 0, has a negative 
minimum for some x = a, and then approaches zero asymptotically as x -+ co. 
We will also consider problems for symmetric potential wells with itinitely high 
walls, because the method is quite general and can be equally applied in both 
situations. Indeed, from a practical point of view, S&r&linger equation will be 
treated as a Sturm-Liouville problem (i.e., the calculations are restricted to a 
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finite domain) and, therefore, the character of the potential function V(x) is of 
secondary importance with respect to the computations. To fix ideas, we will 
restrict the discussion to Eq. (1) with the following boundary conditions 

Y(O) = Y(L) = 0, (2) 

although the generalization to other homogeneous boundary conditions is imme- 
diate. The boundary conditions (2) are rigorous for a potential well problem with 
infinitely high walls; for a central field problem, it is usual to approximate the 
right boundary condition that the eigenfunctions remain finite for x -+ KI by 
taking a suitably large L in (2) ([2], [3]). Th is is an obvious approximation, because 
for a large enough L, the eigenfunctions reach infinitesimally small values anyway. 

3. ANALYTICAL ASPECTS 

We deline the approximate problem to (1) and (2) in the following way: 

i 

v, O<x<x, 

V(x)~ "B 
x <X(X, 
..: (3) 

V73 X,-l < x -==I x, = L. 

In (3), the constant values VI, V, ,..., V, are to be determined by approximating 
an analytical potential V(x), if available, by a step function in a suitable way that 
does not need to be specified now. It suffices only to state that no matter what 
scheme we choose (there are an infinite variety of them), the potential can be 
approximated with arbitrary accuracy, O(h), if we take a sufficiently small step 
width h = xi - x~-~ [5]. Therefore, we can define an approximate problem that 
will approach the exact problem as closely as we wish. Obviously, the approxima- 
tion (3) does not require that the potential be known analytically. 

Once a given number of potential steps is chosen, the approximate problem is 
solved exactly in terms of the elementary circular and hyperbolic functions. We, 
thus, might expect that the accuracy obtained will be roughly the same for all 
eigenvalues and eigenfunctions. This expectation is confirmed by the numerical 
results obtained. 

In each region or layer i, the approximate problem reads 

dpqdx2 + (E - Vi) y = 0. 

i = 1, 2 ,..., n. 
(4) 

It is convenient to define 

O+ E E- Vi, pi2 e / cYi I, (5) 
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so that the solution to (4) is 

y = AiF@) + BiG@&, 

i = 2, 3 ,..., n - 1, 

cosh&x) 
8;’ sinh&x) 

1 c&%x) 
X 8;’ sin(&x) 

(6) 

TABLE I 

Solutions of Es. (4) 

% <o =o >o 

where F and G are given in Table I, and Ai and Bi are integration constants. These 
elementary solutions express the well-known fact that the Schradinger equation 
solutions are oscillatory within the region defined by the two classical turning 
points and exponential outside. The classical turning points are defined by 

(pi f E - Vi = 0, (7) 

that is, they are those where the total energy equals the potential energy. We will 
show later that the turning points do not introduce any difficulty in the method, 
and, thus, they do not require special treatment as is for example the case in the 
WKB approximation. In order to satisfy the boundary conditions (2), the solutions 
in the boundary regions 1 and n are given, respectively, as follows: 

Y = WW& Y = &W&(x - 01, (8) 

where G is defined also in Table I, and Bl and B, are the integration constants. 
The procedure is now straightforward conceptually, although the actual algebra 

might get complicated. To solve the problem, we need to determine the integration 
constants Ai and Bi . This is done by matching the solution and its derivative 
at the interfaces. Thus, we obtain 
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In (9), the primes designate the derivatives of the functions evaluated at the inter- 
faces. Equations (9) are a homogeneous system of 2n - 2 equations with 2n - 2 
unknowns (Ai , i = 2,3 ,..., n - 1; Bi , i = I,2 ,..., n). The condition for the 
existence of a nontrivial solution is that the determinant of the coefficients be equal 
to zero. Explicitly: 

- WL(xn, - ~91 
--G’G%bz-I - 91 

= 0. 

(10) 

The roots of this determinant equation are the eigenvalues of the approximate 
problem, (l), (2), and (3). For each eigenvalue, there is a nontrivial solution for 
Ai , Bi that defines the corresponding eigenfunction. In what follows it is convenient 
to think of 1 A 1 as a function of a real variable, f(E) = 1 A 1 . 

It is important to point out the essential difference between system (9) and those 
obtained in Rayleigh-Ritz or finite difference methods. In the latter, the homo- 
geneous systems obtained are algebraic while system (9) is transcendental. Thus, 
an algebraic system of order n can yield in principle only the first n eigenvalues 
and eigenfunctions, while system (9), for any order n, contains the whole in&rite 
spectrum of eigenvalues and eigenfunctions, because the determinant Eq. (10) is a 
transcendental equation and has always an infinite number of real roots. The fact 
that all the roots are real is guaranteed because (l), (2) with the approximation (3) 
is a Sturm-Liouville system [6]. 

4. NUMERICAL METHOD 

In this section, we present the analysis carried out in order to implement the 
numerical solution of system (9). We first focus in the matrix algebra analysis of 
the determinant Eq. (IO), and then discuss the computation of the eigenfunctions. 
The reader might postpone a detailed study of this section without losing track of 
the essential features of the method. 
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A. The Eigenvalue Equation 

Equation (10) will be referred to as the eigenvalue equation. We have already 
stated that it has an infinite number of real roots that are the bound state eigen- 
values of the approximate problem (l), (2), and (3). For reasons that will become 
immediately apparent, it has been found convenient to translate the last column of 
the determinant (10) to the second place. Obviously, the roots of (10) are not 
aRcted by this. In this way, (10) becomes 

(11) 

The elements in the determinant in (11) have been grouped in 2 x 2 matrices. 
It should be noted that, with the exception of the matrices corresponding to the 
first and last regions, all matrices are of the same form and refer to a single region 
i (specified by &) and a single interface. We can now write (11) in compact matrix 
notation: 

IAI= 

A,, -Al, 0 .a- 0 
0 A,, -A,, *** 0 

’ 0 0 . . . . -A,+z,n-l 

4~1 0 0 . . . An-1.7%-l 

= 0, (12) 

where the elements of the partitioned matrix A are the 2 x 2 matrices appearing 
in (1 l), and zero designates the null 2 x 2 matrix. Explicitly, the notation in (12) 
is 

‘WIXJ 0 
A1l = (G’(B,x,) ) 

0 - WL(x,-I - 01 
0 ’ A+l*l = (0 --G’IB,(x,-, - L)] ’ ) 

(13) 
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It is a known result of matrix algebra that the determinant of A does not change 
if its last column is post-multiplied by -A;!l,n+4n--l,l, and the result added to 
the first column [7]. In this way, we get 

All -A,, 0 **- 
0 A 22 -A,, 0’. 

IAl = 

A- -A-’ -A- n 2.n 1 n 1.n 1 n 1.1 0 0 **- 

0 0 0 **- 

Expanding the determinant by the last row gives 

I A I = I An-m-~ I x 

0 
0 

-A--l.?l-1 
An-l,“-1 

0 . . . A 11 --A12 0 
0 -422 -A2S ... 0 

= 0. 

0 0 An-m--a -A?+2.?3-2 
A- n -A-’ 1 n 1.n -A- 1 n 1.1 -*- 2.n 0 0 An-2.n-2 

= 0. 

(15) 

(14) 

The second determinant in the right side of (15) has the same form as the original 
determinant in Eq. (12), i.e., the only nonzero elements are those in the main 
diagonal, the upper diagonal and the lonely first element of the last row. Therefore, 
the process used is recursive, and is applied n - 2 times to reduce the original 
eigenvalue Eq. (12) to the form 

I A I = I An-m-1 I ... I Aez I x I A,, + 4,Aii‘,1AdG1 *.. An-a.n-lA~~l,n-1An-1.1 I = 0. 
(16) 

From Eq. (13) and Table I, it is clear that 

IAil = 1, i = 2, 3 ,..., n - 1, (17) 

regardless of the value and sign of (Y~ . Therefore, Eq. (16) reduces finally to 

I A I = I A,, + A,,A,-,‘A,A~ . ..A- -A-’ -A- I=O. n 2.n 1 R 1.94 1 PB 1.1 (18) 

We have, therefore, reduced the evaluation of the determinant of a (2n - 2) 
x (2n - 2) matrix in (10) to that of the 2 x 2 matrix in the right side of (18). 

It is necessary now to point out the considerable importance of having approxi- 
mated the potential by a step function, so that all the elements in the matrices 
Aij in (18) are given in terms of the elementary circular and hyperbolic functions 
[8]. Consider a bound state eigenvalue corresponding to an eigenfunction with 
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two turning points. In the classically forbidden regions, the eigenfunction behaves 
exponentially, that is, Eq. (5), 

ai = E - Vi < 0. (19) 

In our method, the eigenfunction is expressed in these regions in terms of hyper- 
bolic functions, reflecting their exponential behavior (see Table I). It is a well-known 
difficulty in numerical methods (see [4]) that scaling problems (underllows) occur 
when computing the eigenfunctions away from the turning points. This is because 
in the classically forbidden region, the eigenfunction might be many orders of 
magnitude smaller than in the allowed region. Indeed, the situation is similar to 
that occurring in boundary layer problems, and if there were a need to compute 
the eigenfunction accurately away from a turning point (e.g., in a barrier penetra- 
tion problem such as in alpha decay), then special treatment is required for this 
region [9]. Our method does not present these difficulties, indeed, it is uniformly 
valid, both in the classically allowed and forbidden regions, for problems where 
the potential wells are extremely deep. In what follows, we refer to these problems 
as asymptotic problems. The reasons can be understood by an examination of (18). 
Consider the nonsingular matrix in (18) furthest to the right of the tuning point; 
see also (13) and Table I, 

cash /3,,-1x,+2 
An-2*n-1 = (/Ins1 sinh &,-lx,-2 

sULlx~-a)/Pn-l 
cash ,Bn-1x,-2 ) . (20) 

The scaling problems referred to above are reflected in the fact that in typical 
Quantum Mechanics problems, the arguments of the hyperbolic functions in (20) 
can grow quite big, say in excess of 100. It is clear that we would then be in trouble 
because 

sinh 100 + cash 100 + elW/2. (21) 

Indeed, while multiplying numerically the 2 x 2 matrices in (18), in a direct 
evaluation of the determinant 1 A f = f(E), differences such as sinh 100 - cash 100 
must be evaluated numerically and are returned, of course, as zero. That is, in 
asymptotic situations, a direct evaluation of 1 A 1 = f(E) gives identically the 
result 

IAl =f(E)=O, (22) 

for E in the range of interest. However, except for the two singular matrices Al, 
and &-1.l , where the arguments of the hyperbolic functions are O(l), we can 
group the matrices in (18) as follows: 

Ai-l&l = ( 
cash Bi(Xi - Xi-3 -StiVdX* - %1)1/h 

-pi si& j$(xg - xi-3 cash /36(x< - xi-3 1 ’ (23) 
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for the classically forbidden region outside the turning points, and 

A&,,&1 = ( 
cos p&vi - Xi-l) --sG%(xi - Xi-Al/Pi 

pi sin pi(Xi - Xi-l) COS fii(Xi - Xi-l) ) (24) 

for the allowed region inside. The expressions (23) and (24) were obtained by 
performing the matrix multiplications and using the elementary addition formulas 
for the circular and hyperbolic functions. This simple manipulation has, thus, 
eliminated in one stroke all the scaling difficulties connected with the eigenvalue 
equation, because the arguments of the hyperbolic functions have been reduced 
by at least two orders of magnitude with respect to those in (20) (for example, if 
the potential is approximated by 50 steps, xe - xi-1 = h < xJ50). We feel that 
the analytical elimination of the scaling difficulties has obvious advantages over a 
numerical treatment. It is doubtful that a similar result could have been obtained 
using a more refined approximation to the potential such as that pointed out in 
PI. 

We conclude this section with a brief description of the numerical method used 
to find the roots of the determinant Eq. (US), with the matrices grouped as shown 
in (23) and (24). These roots are approximations to the energy eigenvalues for the 
bound states. It is useful to think of 1 A 1 in (18) simply as a function of a real 
variable f(E), 

f(E) = I A I 3 (25) 

whose zeros are to be determined numerically. The eigenvalue search is greatly 
facilitated by the fact that all eigenvaules are bounded from below by the minimum 
value of the potential ([lo], [I 11) 

En b Vmin . (26) 

In asymptotic problems with very deep potential wells, the fundamental energy 
eigenvalue approaches asymptotically the potential minimum [l 11, 

E,, + Vmin . (27) 

We wrote a basic rootfinder subroutine ROOTF that computes the argument 
function f(E) in a predetermined number of points in a range 

Vmin < E C Ertght , (28) 

where Erieht is arbitrary and is to be chosen sufficiently to the right of Van depend- 
ing on how many eigenvalues are desired. Whenever a change of sign of the 
function f(E) at two successive points is detected, ROOTF obtains the root by 
Mueller’s iteration method [12]. Once the desired accuracy for the root is obtained, 
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ROOTF goes on evaluating the function toward the right until the next zero is 
detected. The search is terminated when the range (28) is scanned completely or 
when a predetermined number of eigenvalues has been found. 

B. Computation of the Eigenfwlctions 

It has been found convenient to write System (9) in matrix notation in the 
following form: 

&Cl - &c, = 0 

&A - AA = 0 

&c, - &UC, = 0 

(29) 

-L,.,-~-z - &~J,,-I = 0 
4-1 .+I + A,,,,-,%, = 0, 

where Aij are the 2 x 2 matrices given in (13) and 4 are the following two-row 
vectors: 

Cl = i = 2, 3 ,..., n - 1. 

The components of the vector c, are the coefficients of the eigenfunctions in the 
boundary regions 1 and n [see Eq. (8)]. The components of the other vectors 
q , i + 1, are the coefficients of the eigenfunctions in the inner regions [see Eq. (6)]. 
Notice that once the eigenvalues have been determined, the matrices A, [Eqs. (13) 
and (5)] are explicitly determined. We again show that a direct numerical solution 
of (29) would fail in strongly asymptotic problems, as are most of Quantum 
Mechanics problems. Let us determine the coefficients of the eigenfunction at the 
inner region furthest to the right, which is assumed to be outside the turning points 
in the classically forbidden region. From the last equation of (29), we get 

G-I = --A;~L,,&I,,~I . (31) 

Consider for the sake of the argument that the eigenfunction is symmetric, then, 
Table I and [Eq. (8)], we must have 

B,, = -Bl = -1, (32) 
because of the symmetry and also because the eigenfunctions are determined 
except by a constant factor. Thus, 

cl= (2) = (ll). (33) 
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After multiplying A,-l,l by c, in (31), we get 

c,-1 = - ( cash j3,+.-1~,+l -sinW%-lx~-lMn-l sWPn(x,-l - JWA 
--pnml sinh /?,,-lx,-1 cash i3,,-1xn-1 )( cash /I,Jx,+~ - L) ) ’ 

(34) 
The arguments of the hyperbolic functions in the vector to the right of (34) are 
O(l), but those in the matrix might be very large, typically in excess of 100. There 
is no numerical difference then between the hyperbolic sine and the cosine. Per- 
forming the matrix multiplication in (34) and using (6), we get for the eigenfunction 
in region n - 1 the following expression 

y(x) = A(cosh /3,+rx - sinh &-ix) = 0, (35) 

where A is a certain constant, i.e., for /?n-1~ > 100, as there is no numerical 
difference whatsoever between the two hyperbolic functions; the computation of 
the eigenfunction would yield zero identically in this region. It is to be stressed that 
the problem just discussed is a real difficulty, because as there is only one arbitrary 
constant available, we are forced to start the solution of (29) at the first or at the 
last equation. This is because in 

c2 = A&4 $1 ) G-1 = -4T:l.“-l~n-l.1c1 , (36) 

the vectors 

v2 = &Cl 3 VW-1 = A-l.lCl (37) 

have components which involve only one arbitrary integration constant, B1 and 
B, , respectively [see Eqs. (13) and (30) for the notation of the matrices A and the 
vectors c]; however, it is impossible to start the integration in an inner equation 
of (29) because two arbitrary constants are required to define a vector ci , i # I, 
n - 1. Further, if the numerical condition (35) occurs, it will persist in other regions 
as long as the arguments of the hyperbolic functions remain large; i.e., we would 
get for the eigenfunction 

y(x) = 0 (38) 

identically in part of the domain. Also, the inaccuracies due to this are carried 
along in the computation of the eigenfunction in the rest of the domain. 

This difficulty is solved analytically, just as was done with the eigenvalue Eq. (18), 
by using the elementary addition formulas for the circular and hyperbolic func- 
tions. We now include some elementary algebraic manipulations showing how 
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this is achieved. If the integration is started in the first equation of (29) (it can be 
equally stated in the last), we get 

c2 = A;;A,,c, ; 

cg = A~A,,A;A,,c, ; 

cp = A-lA A-‘A A-‘A c . 34 33 23 22 12 11 1 9 

(39) 

The last equation of (39), for m = n - 1, determines c,-~ , and from this and 
the last equation of (29) we could, in principle, obtain the last integration constant 
B,, to entirely determine the problem. However, for asymptotic problems with very 
deep wells, this procedure is not accurate because errors accumulate and propagate 
if (29) were solved all the way from top to bottom; this is the same as starting with 
an arbitrary value of the eigenfunction at the left boundary region and integrating 
all the way to the right boundary. To avoid this difficulty, the solution of (29) as 
given by (39) is stopped at m = n/2, i.e., at the midpoint of the domain, which is 
always taken at the minimum of the potential function. If the potential were 
symmetric that is all we need, because the eigenfunctions are symmetric or anti- 
symmetric. For central field problems with asymmetric potentials, after computing 
the eigenfunctions from the left to the midpoint, (29) is solved starting from the 
bottom till the midpoint, i.e., the eigenfunction is now computed from the right 
inward to the midpoint, and then both pieces are matched at the center. It should 
be noticed that the eigenfunctions so computed are correct except for a factor, i.e., 
their derivatives match at the midpoint and the matching is achieved by multiplying 
each piece by its reciprocal value at the center, so that both pieces have also the 
same midpoint value. Except for the first matrix in the right side of the equations 
in (39) the others are grouped in pairs, thus, 

AiiAzlsi = ( 
Gosh pi(Xi - xi-l) sinhv& - xi-i)]/pi 

pi sinh pa(xi - xi-l) cash pi(xi - xi-l) ) 

in the classically forbidden region [see Eqs. (5), (13), and Table I], and 

AiiATJ1.i = ( 
COS pi(Xi - X&l) SinWi(xi - xi-&l/pi 

-Pi sin pi(Xi - Xi-l) COS j3*(Xi - Ximl) 1 (41) 

in the allowed region. In this way, the arguments of the hyperbolic functions in (40) 
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are two orders of magnitude smaller than if the matrices were computed individu- 
ally. Equations (39) are now written as follows: 

c2 = A;& , ~2 = Ant,, 

c, = A-4 23 3, (42) 

cm = 4L&~m, v, = A,,+l.m-~A;:2,m--l *** Allcl . 

The vectors vt in (42) are evaluated grouping the matrices in pairs as shown in (40) 
and (41), except the last matrix Al1 where the arguments of the hyperbolic func- 
tions are O(1). Also, the vectors vi involve only one arbitrary integration constant 
BI , see Eqs. (13) and (30). The inverse A matrices at the left in (42) involve still 
hyperbolic functions with very large arguments, and, therefore, a computation of 
the coefficients ci would present still serious numerical difficulties. However, it is 
not necessary to compute the coefficients Ci isolatedly, in order to obtain the eigen- 
functions. From Eqs. (6), (30), and (42), we have the following expression for the 
eigenfunctions in vector notation: 

J’(X) = Azl,iVi *f(X), 

where f(x) is the vector function 

in region i, i # 1, n, (43) 

Using Eqs. (13), (42), and (44) and the elementary addition formulas for the 
circular and hyperbolic functions, the following expression is obtained for the 
inner product in (43): 

YCx) = (l//%)ls, v il cash fli(Xi-1 - X) - ui2 sinh fid(Xi-1 - x)] in region i # 1, n 

(45) 
in the classically forbidden region, and 

Ytx) = U/MPi 0 il COS j?&-, - x) - Ui2 sin fli(X$-1 - X)] in region i # 1, n 

(46) 
in the allowed region. In (45) and (46), the following notation is used 

for the components of the vectors vi defined in (42). 



SOLUTION OF THE SCHRiiDlNGER EQUATION 201 

Having been able to use the elementary addition formulas has allowed us to 
analytically perform the inner product in (43), thus, eliminating the need to evaluate 
hyperbolic functions with very large arguments. The numerical evaluation of the 
vectors Y in (42) and, therefore, of the eigenfunctions, does not present any numeri- 
cal problem. It is worth mentioning that once the eigenvalue Eq. (18) has been 
solved and the eigenvalues stored, the same subroutine ROOTF is used to compute 
the eigenfunctions. This is achieved by substituting the eigenvalue function 
f(E) = 1 A 1 in ROOTF by the eigenfunctions J(X), and the range (28) by 
0 -C x < L. In this way, the eigenfunctions are computed in the domain and their 
nodes found automatically. 

5. ERROR ANALYSIS 

The method presented in this paper is a first order method, that is, the absolute 
error both in the eigenvalues and eigenfunctions is O(h), where h is the spatial step 
size. This can be shown most simply by applying perturbation theory to our 
approximate problem (l), (2), and (3) (see [lo], p. 343). As the potential of the 
exact differential equation undergoes a perturbation, O(h), when approximated by 
a step function, a perturbation theory analysis shows that the absolute errors in the 
eigenvalues and eigenfunctions are also O(h). At first sight, this seems a bad result. 
However, it must surely represent a conservative upper limit for the absolute 
errors, because the numerical results to be shown below are at least one order of 
magnitude better than indicated by the above theoretical error bounds. 

6. NUMERICAL RESULTS 

In this section we describe some of the results obtained with the computer 
program that incorporates the method discussed in the previous sections. First, a 
central field Quantum Mechanics problem was treated, the radial Schrijdinger 
equation (1) with Morse’s potential [13], 

V(x) = D(1 - exp[-a(x - x,)]}~ - D, (48) 

for the following values of the parameters: 

a = 0.711248, x, = 1.9975, D = 188.4355. (49 

The boundary conditions (2) used in conjunction with (47) are 

y(0) = y(10) = 0. 

5W512-3 

(50) 
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The second problem treated was that of Mathieu’s equation [14], where the 
“potential” is 

V(x) = 2q cos 2x, (51) 

q a positive constant. The boundary conditions (2) are in this case 

y(0) = y(7r) = 0. (52) 

Although Mathieu’s equation is not a true Quantum Mechanics problem, it is 
entirely correct to think of it as if it were so. Indeed, Mathieu’s equation, Eqs. (1), 
(51), and (52), gives the bound states of a particle in a box of length v and 
infinitely high walls with the potential inside given by (51). 

The Schrijdinger equation with Morse’s potential was chosen because analytic 
solutions are known [13] and, thus, provide a check for the numerical solutions. 
Mathieu’s equation has been extensively tabulated ([14], [15]), and so accurate 
numerical data are also available for comparison. 

A. Schrodinger Equation with Morse’s Potential 

We have approximated Morse’s potential by a step function with the same 
number of steps m = n/2 in the ranges 

0 < x < 1.9975, 1.9975 < x < 10. (53) 

The interface is chosen exactly at the abscissa of the minimum of the potential 

V(l.9975) = V;nln = -188.4355. (54) 

Further, as the potential is more rapidly varying about its minimum than toward 
the right domain boundary, where it is quite flat, the n/2 potential steps in the 
right range in (53) were taken as follows: 

n/4 steps in 1.9975 < x < 4, and n/4 steps in 4 < x < 10. 

Explicitly, the approximation is 

Vl = r.vo + ~(xW7 0 < x < Xl ; 
v2 = Malt + w4w~ x1 < x < x, ; 

. . . . . . 
V, = -188.4355, &-l < x < x, = 1.9975; 

V(x) w ( If,,,,, = -188.4355, &2 -=zx <&n+1; (55) 
V m+2 = tmn,,) + v(xm+zw~ &+1<X ~&n+2; 

. . . . . . 

VT& = [V(x,-3 + wnw2, X,-l < x < x, = 10; 
\ m = n/2, 
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and the three step widths used are thus 

0 < x < 1.9975, h, = 1.9975/(?2/2), 
1.9975 < x < 4, h, = (4 - 1.9975)/@/4) 
4 < x < 10, h, = (10 - 4)/(n/4). 

The results for the first five eigenvalues, when the potential is approximated by 
50, 100, and 200 steps, are given in Table II, together with the analytic results. It 

TABLE II 

First Five Eigenvalues of Schrijdinger Equation with Morse’s Potential 

n -5 -6 -4 --ES -4 

50 178.856 160.219 142.771 126.269 110.772 
100 178.795 160.265 142.769 126.281 110.797 
200 178.795 160.279 142.776 126.286 110.805 

Exact 178.798 160.282 142.780 126.288 110.808 

should be noticed that the maximum error in the eigenvalues for n = 50 is less 
than 0.04 percent; for n = 100, the maximum error is 0.01 percent; and for 
n = 200, the maximum error is 0.003 percent. The eigenvalues in Table II were 
obtained by searching for the roots of the eigenvalue Eq. (18) in the range [see (28)] 

-188.0 < E < -108.0. (56) 

The function ] A 1 E f(E) was evaluated at 20 points in the range (56), and no 
root was ever missed in the first attempt. We consider this to be the main attraction 
of the method, that is, the great ease with which any desired number of eigenvalues 
and eigenfunctions are obtained in one single run of the program, without needing 
to supply initial guesses for the eigenvalues. Indeed, all that is required is a numeri- 
cal table of the potential and the search range (28). 

B. Mathieu’s Equation 

In this case, we approximated the “potential” (51) as follows: 

’ v, = V(0) = 2q, o<x<x,; 
v2 = M4 + ~cGw, Xl < x < x2 ; 

. . . . . . 

V(x) = ( p = 1;; X,-l < x < x, = r/2; 
m-+1 = , xm <x <&a+,; 

(57) 
. . . . . . 

v, = V(x,) = 2q, X,-l < x < X” = r; 
i m = n/2. 
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The potential has the minimum at the center 

V m*n = V(77/2) = -2q. (58) 

It is to be noticed that in both problems, (55) and (57), we have approximated 
the minimum exactly and also two steps at left and right were set equal to the 
minimum; this was done for obvious reasons. The results obtained for q = 40 
are given in Tables III and IV, for n = 52, 104, together with the exact results 

TABLE III 

Eigenvalues of Mathieu’s Equation, q = 40 

n --Eo -El --ES --El -4 

52 67.596 43.316 20.194 -1.7500 -22.335 

104 67.599 43.343 20.203 -1.7354 -22.334 

Exact 67.606 43.352 20.208 -1.7300 -22.332 

TABLE IV 

Nodes of Mathieu Eigenfunctions, q = 40 

n Nil” N.2, N8, NJ2 N.1 N&2 

52 1.57080 1.36624 1.21042 1.57080 1.07562 1.41518 

104 1.57080 1.36617 1.21046 1.57080 1.07563 1.41513 

Exact 1.57080 1.36616 1.21047 1.57080 1.07565 1.41513 

a N,, means j-th node of i-th eigenfunction, the index i = 0 refers to the fundamental mode, 
etc. 

taken from Ince’s papers [15]. It is seen that the accuracy is good with relatively 
few steps, both for the eigenvalues and the zeros of the eigenfunctions. The case 
q = 40 is a fairly straightforward calculation, because we are not yet in the asymp- 
totic range which is the situation when q is very large. To test the method and the 
program, we also solved Mathieu’s equation for q = 160 and q = 1,600 with free 
end boundary conditions 

dy(O)/dx = dj+r)/dx = 0. 

The first three eigenvalues for these cases are given in Table V, together with the 
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values obtained by S. Goldstein (1141, p. 240). We see that the case q = 1,600 is 
truly an asymptotic problem, where [see (27)] 

E,+ Vmln = -3,200. 

Here the eigenfunctions are 35 orders of magnitude smaller at the boundaries than 
at the center, where they cluster. In the limit q -+ 00, the nodes of all the eigen- 
functions approach asymptotically 7r/2, the domain center. 

TABLE V 

First Three Eigenvalues of Mathieu’s Equation for Large Values of the Parameter and Free End 
Boundary Conditions 

n -E0 

q = 160 

-Et -4 

q=1,600 

---ECU -4 --EZ 

52 

104 

Accurate” 
value 

294.96 245.22 196.78 3121.6 2960.0 2802.7 

294.93 245.34 196.82 3120.2 2960.8 2803.0 

294.94 196.85 3120.2 2803.3 

o These “accurate” values were obtained by S. Goldstein and are reported in [14], p. 240. The 
missing values are not reported. 

In order to clearly show the difference between the present method and the more 
conventional ones, the absolute accuracy of which decreases as the order of the 
eigenvalues increases, we obtained the fist 16 eigenvalues of Mathieu’s equation 
for q = 100 and free end boundary conditions. The search range (28) was in this 
case 

-181 < E<250, 

and the function 1 A I = f(E) was evaluated at 75 points. The results obtained 
with 104 steps are given in Table VI, together with the values published in [16]. It 
is clearly seen that the absolute accuracy is approximately uniform and does not 
decrease for the higher eigenvalues. 

The numerical results obtained con6rm the analysis of Section 4, that is, that 
the method is uniformly valid both for nonasymptotic and asymptotic problems. 
It should be noticed that all the results reported in TabIes II, III, IV, V, and VI, 
were obtained in one single run of the program, which is written in FORTRAN IV. 
The calculations were performed on an IBM 360/50 computing system, and the 
total machine time used was eleven minutes. 
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TABLE VI 

First 16 Eigenvalues of Mathieu’s Equation for q = 100 
and Free End Boundary Conditions 

r 
5 

Ref. 16 This Work (104 steps) 

0 - 180.25 -180.24 
1 - 141.28 -141.25 
2 -103.37 - 103.3s 
3 -66.57 -66.55 
4 -30.95 -30.94 
5 3.43 3.4s 
6 36.49 36.49 
7 68.11 68.12 
8 98.15 98.15 
9 126.40 126.40 

10 152.41 152.41 
11 175.07 175.06 
12 192.73 192.72 
13 207.63 207.63 
14 225.77 225.76 
15 249.33 249.32 

7. CONCLUSIONS 

The greatest advantages of the method are the simplicity of its application and 
the fact that it is also valid for strong asymptotic problems. When many different 
problems need to be solved, the method seems particularly appropriate, because 
the solutions can be obtained very easily knowing only the range where the eigen- 
values are, and this range is given analytically by (28). The greatest need for im- 
provement lies in the area of error analysis, a question we have not explored fully. 
It is only known for certain that more steps in the potential result in more accurate 
solutions, because the approximate problem solved approaches asymptotically 
the exact problem for an infinitesimally small step width. Thus, the number of 
steps in the potential can be increased till the results obtained become stationary at 
the desired accuracy. However, it would be very important to know what is the 
“best” step function for a given number of steps that results in the most accurate 
solution to the problem. In our calculations, we found that the fundamental 
eigenvalue specially and the higher eigenvalues to a lesser degree are quite sensitive 
to the way in which the potential is approximated near its minimum, while relati- 
vely insensitive to the approximation chosen away from the minimum. This is 
specially true in problems with very deep wells. 



SOLUTION OF THE SCHRGDINGER EQUATION 207 

ACKNOWLEDGMENT 

We acknowledge a private communication of Mr. Edward Garelis on the possibility of reducing 
the evaluation of the determinant of the general matrix to the evaluation of the determinant of 
a2 x 2matrix. 

One of the authors (R.G.O.) is grateful for the support given by the Brazilian government 
institutions, CNEN and CAPES, which made his stay in the United States possible. 

REFERENCES 

1. G. BIRKHOFF, C. DE BOOR, B. SWARTZ, AND B. WENDROFF, SIAM J. Numer. Anal. 3 (1966), 
188. 

2. 0. JOHNSON, IBM Scientific Center (Houston), Rep. No. 320-2343, 1968. 
3. J. W. C~~LEY, Math. Camp. 15 (1961), 363. 
4. J. M. BLATT, J. Camp. Phys. 1(1967), 382. 
5. B. WENDROFF, “Theoretical Numerical Analysis,” p. 23, Academic Press, New York, 1966. 
6. G. BIRKHOFF AND G.-C. ROTA, “Ordinary Differential Equations,” Chap. X, Ginn-Blaisdell, 

Boston, 1962. 
7. F. R. GANTACHER, “Matrix Theory,” Vol. I, p. 45, Chelsea, New York, 1960. 
8. It must be noticed that if the potential had been approximated by small straight line secants, 

the resulting diierential equation in each region could also have been solved exacly in terms 
of Bessel or Airy functions, see for example R. H. DICKE AND J. P. WI~TKE, “Introduction to 
Quantum Mechanics,” p. 247, Addison-Wesley, Reading, Mass., 1960. 

9. J. D. COLE, “Perturbation Methods in Applied Mathematics,” p. 105, Ginn-Blaisdell, 
Waltham, Mass., 1968. 

10. R. CURRANT AND D. I&BERT, “Methods of Mathematical Physics,” Vol. I, p. 445, Wiley 
(Interscien~), New York, 1962. 

11. J. CANOSA AND J. D. COLE, J. Math. Phys. 9 (1968), 1915. 
12. Mueller’s method is programmed in a subroutine called DRTMI, IBM Corporation, System 

360 Scientific Subroutine Package (36OA-CM-O3X), Version II, Programmer’s Manual, 
Report No. H20-0205-2, Technical Publications Dept., White Plains, New York, where a 
reference to the literature is given. 

13. P. M. MORSE, Phys. Rev. 34 (1929), 57. 
14. N. W. MCLKHLAN, “Theory and Application of Mathieu Functions,” Dover Publications, 

Inc., New York, 1964. 
15. E. L. INCE, Proc. Roy. Sot. ~inburgh Sect. A, 52 (1931-32), 355. Also ibid., 52 (1931-32), 

424. 
16. G. BLANCH AND I. RHODES, J. Wbshingron Ad. Sci. 45 (1955), 6, 166. 


